

TOWARDS UNDERSTANDING THE FOLIAR DISEASE COMPLEX OF ONION IN NEW YORK

Sarah J. Pethybridge, Frank Hay, Elizabeth Maloney and Christy Hoepting 20 January 2016

Objective:

Quantify the **prevalence** and **incidence** of foliar diseases affecting high input, conventional onion production in New York

Concern over increasing severity of dieback and symptom confusion

SURVEY-BASED APPROACH

- Diseased leaves collected from 16 July to 28 August
 Conventional (n = 846 from 22 fields)
 - Low input (*n* = 283 from 10 fields)
- 8 to 73 plants/field
- Multiple locations/field
- Returned to laboratory for further testing and isolations

METHODS

Diseased leaves

- Incubated at high humidity in laboratory
- Emerging mycelia identified and transferred to artificial media
- Prevalence (number of fields where a species was detected/total number of fields; %)
- Incidence (number of diseased leaves from which a species was isolated compared to total number of leaves; %)

	Fungi (Disease)	Low input $(n = 10)$	Conventional (n = 22)
Pathogens	Stemphylium vesicarium (Stemphylium leaf blight)	100	100
	Pleospora allii*	80	95.5
	Alternaria porri (Purple blotch)	50	0
	Alternaria alternata	80	59.1
	Peronospora destructor (Downy mildew)	60	4.5
Common hustin/	Botrytis spp. (Leaf blight/neck rot)	30	9.1
	Colletotrichum spp. (Anthracnose)	30	4.5
	Embellisia allii (Skin blotch and bulb canker of garlic)	30	0
cocondomy	Humicola spp.	40	4.5
secondary	Fusarium spp.	50	18.2
	Cladosporium spp.	70	40.9
	Ulocladium atrum	50	36.4
	No fungi (sterile)	10	36.4

INCIDENCE						
	Effect of production practice					
Fungi	Low input (%) (283 leaves)	Conventional (%) (846 leaves)	t (<i>P</i> =)			
Stemphylium vesicarium	85.5	86.4	-0.16 (0.436)			
Alternaria porri	14.5	0	2.33 (0.022)			
Alternaria alternata	49.5	6.0	3.85 (0.001)			
Peronospora destructor	11.1	0.1	2.13 (0.031)			
Botrytis spp.	2.1	0.5	1.42 (0.091)			

INCIDENCE						
		Effect of location				
Location (number of fields)	Isolation frequency (%)					
	Stemphylium vesicarium	Pleospora allii				
Elba (6)	95.7	35.0				
Orange (3)	78.2	63.3				
Potter (3)	82.2	73.0				
Sodus (3)	100.0	69.4				
Df	14	14				
P =	0.143 (ns)	0.194 (ns)				

KEY FINDINGS

Stemphylium leaf blight**

Found in all fields at high incidence
 Incidence was not significantly different between low input and conventional fields;

Purple blotch
 Higher prevalence in low input fields
 Incidence was significantly lower in conventional fields;

Downy mildew and Botrytis spp.Low prevalence and incidence but more prevalent in low input fields;

Fungicides used in conventional production may be highly efficacious for the control of purple blotch and other foliar diseases.

Results in context of the survey returned to all participating growers.

ACKNOWLEDGMENTS

Cornell Cooperative Extension personnel Elizabeth Buck Cordelia Hall Melissa Call Kevin Besler

Growers and industry

ORDP

Nault program for onion advice!

